Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell
نویسندگان
چکیده
Entangled photon pairs, termed as biphotons, have been the benchmark tool for experimental quantum optics. The quantum-network protocols based on photon-atom interfaces have stimulated a great demand for single photons with bandwidth comparable to or narrower than the atomic natural linewidth. In the past decade, laser-cooled atoms have often been used for producing such biphotons, but the apparatus is too large and complicated for engineering. Here we report the generation of subnatural-linewidth (<6 MHz) biphotons from a Doppler-broadened (530 MHz) hot atomic vapour cell. We use on-resonance spontaneous four-wave mixing in a hot paraffin-coated 87Rb vapour cell at 63 °C to produce biphotons with controllable bandwidth (1.9-3.2 MHz) and coherence time (47-94 ns). Our backward phase-matching scheme with spatially separated optical pumping is the key to suppress uncorrelated photons from resonance fluorescence. The result may lead towards miniature narrowband biphoton sources.
منابع مشابه
Subnatural linewidth biphotons with controllable temporal length.
This Letter describes the generation of biphotons with a temporal length that can be varied over the range of 50-900 ns, with an estimated subnatural linewidth as small as 0.75 MHz. We make use of electromagnetically induced transparency and slow light in a two-dimensional magneto-optical trap with an optical depth as high as 62. We report a sharp leading edge spike that is a Sommerfeld-Brillou...
متن کاملBright narrowband biphoton generation from a hot rubidium atomic vapor cell
We demonstrate the generation of high-quality narrowband biphotons from a Doppler-broadened hot rubidium atomic vapor cell. Choosing a double-K atomic energy level scheme for optimizing both spontaneous four-wave mixing nonlinear parametric interaction and electromagnetically induced transparency (EIT), we achieve a biphoton spectral brightness as high as 14 000 s MHz . Meanwhile, we apply a sp...
متن کاملSuppression of inhomogeneous broadening using the ac Stark shift
Inhomogeneous broadening is ubiquitous in light-matter interactions [1]. When a laser beam interacts with a gas, the dominant broadening is typically due to the Doppler effect, which causes atoms to experience different laser frequencies depending on their velocities. For atoms embedded in crystals, the inhomogeneous broadening is a result of the shifts in the energy levels due to local variati...
متن کاملElectromagnetically induced transparency in a sodium vapour cell
We report on an investigation of electromagnetically induced transparency (EIT) in sodium vapour. In our experiment, sodium atoms are excited on the D1-line with laser radiation containing two components with a frequency difference close to that of the two hyperfine ground states of sodium (1.772 GHz). Such an excitation leads to coherent trapping of atomic population in “dark” superpositional ...
متن کاملThirteen pump-probe resonances of the sodium D1 line
We present the results of a pump-probe laser spectroscopic investigation of the Doppler-broadened sodium D1 resonance line. We find 13 resonances in the resulting spectra. These observations are well described by the numerical predictions of a four-level atomic model of the hyperfine structure of the sodium D1 line. We also find that many, but not all, of these features can be understood in ter...
متن کامل